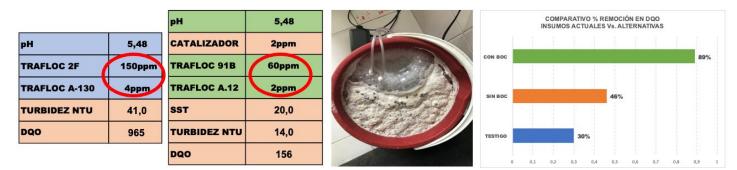


Successful Cases with Catalyst and Polymers in the Country of Colombia


Dairy Farm

Successful case where the coagulant dose could be lowered, and COD decreased by implementing BOC technology.

BEFORE			AFTER THREE HOURS - BOC	
PARAMETER	RESULT	Eco-Cat [™] is dosed at 3.0 ppm and the wastewater sample is	PARAMETER	RESULT
Initial COD	3030 ppm	left in aeration for three hours.	Initial COD	3030 ppm
Final COD	1260 ppm		Final COD	780 ppm
% Removal	58.4%		% Removal	74.2%
Coagulant	100 ppm		Coagulant	40 ppm
Polymer	2		Polymer	2
Initial Turbidity	760		Initial Turbidity	760
Final Turbidity	106		Final Turbidity	34

The decrease in coagulant dosage was 60% and a greater removal in COD was obtained when dosing the BOC.

Successful case in a dairy industry where the treated wastewater is a mixture of domestic water, isotonic drinks and milk.

- The BOC-treated wastewater sample shows a significant decrease in coagulant and polymer dosages
- The COD and Turbidity removals for the BOC-treated wastewater sample are greater than those obtained without the dosing of the technology.

Chicken Slaughter Plant

The high consumption of coagulant and polymers was due to the excess of fats from the slaughter process, once the BOC technology dosing and air injection were implemented in the wastewater receiving tank, the chemical consumption decreased by more than 50% and the removal of turbidity in the final effluent was above 95%.

BEFO	RE	AFTER EIGHT [DAYS - BOC
PARAMETER	RESULT	PARAMETER	RESULT
Flow I/seg	41	Flow I/seg	41
Coagulant	1100 ppm	вос	10 ppm
Anionic Polymer	10 ppm	Coagulant	480 ppm
Cationic Polymer	20 ppm	Anionic Polymer	3 ppm
Initial Turbidity	1870	Cationic Polymer	11 ppm
Final Turbidity	158	Initial Turbidity	1870
		Final Turbidity	58

Wastewater with High Albumin Content in Egg Dehydrating Industry

The need reported by the plant engineers is the high COD presented at the exit of the system; Jar evaluations are carried out, where BOC was dosed at 10 ppm, it is left in aeration for 3 hours and then coagulant and polymer dosing is carried out.

BEFO	RE	AFTER THREE HOURS - BOC		
PARAMETER	RESULT	PARAMETER	RESULT	
Coagulant	1400 ppm	Coagulant	850 ppm	
Polymer	10	Polymer	5	

COD Water entering the system

COD Water COD Water BOC, only BOC Coagulant and Polymer

Clarification Leached From A Sanitary Landfill - NONTOX

Leachate sample taken from an oxidation pond and left in aeration for two hours with 30 ppm of NONTOX; the final results were better with NONTOX and a reduction of coagulant >35% was achieved.

BEFOI	RE	AFTER 2 HOURS OF AERATION	
PARAMETER	RESULT	PARAMETER	RESULT
Flow I/seg	1.5	Flow I/seg	1.5
рН	8.0	рН	8.0
Initial COD	10480 ppm	Initial COD	10480 ppm
Final COD	8650 ppm	Final COD	7350 ppm
Initial Turbidity	405	Initial Turbidity	405
-		Final Turbidity	52,8
Final Turbidity	69.6	Initial Chlorides	1200 ppm
Initial Chlorides	1200 ppm	Final Chlorides	250 ppm
Final Chlorides	300 ppm	NONTOX	30 ppm
Coagulant	4000 ppm	Coagulant	2500 ppm
Polymer	5 ppm	Polymer	5 ppm

Conclusions

- The implementation of the BOC technology dosage allows to obtain greater benefits compared to the consumption of chemical inputs, coagulant and polymers.
- The dosage of BOC technology in the presence of air, accelerates the degradation of organic matter and increases the efficiency in the treatment units (WWTP), allowing to obtain at the end of the effluent a better-quality water in the parameters COD, BOD, Fats and Oils
- In all exposed cases, there is a significant reduction in the emission of offensive odors